Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 3(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429377

RESUMO

Mutations in the ER chaperone calreticulin (CALR) are common in myeloproliferative neoplasm (MPN) patients, activate the thrombopoietin receptor (MPL), and mediate constitutive JAK/STAT signaling. The mechanisms by which CALR mutations cause myeloid transformation are incompletely defined. We used mass spectrometry proteomics to identify CALR-mutant interacting proteins. Mutant CALR caused mislocalization of binding partners and increased recruitment of FLI1, ERP57, and CALR to the MPL promoter to enhance transcription. Consistent with a critical role for CALR-mediated JAK/STAT activation, we confirmed the efficacy of JAK2 inhibition on CALR-mutant cells in vitro and in vivo. Due to the altered interactome induced by CALR mutations, we hypothesized that CALR-mutant MPNs may be vulnerable to disruption of aberrant CALR protein complexes. A synthetic peptide designed to competitively inhibit the carboxy terminal of CALR specifically abrogated MPL/JAK/STAT signaling in cell lines and primary samples and improved the efficacy of JAK kinase inhibitors. These findings reveal what to our knowledge is a novel potential therapeutic approach for patients with CALR-mutant MPN.


Assuntos
Antineoplásicos/farmacologia , Calreticulina/genética , Leucemia/genética , Transtornos Mieloproliferativos/genética , Animais , Calreticulina/antagonistas & inibidores , Calreticulina/metabolismo , Linhagem Celular , Cromatina/metabolismo , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Janus Quinases/antagonistas & inibidores , Leucemia/tratamento farmacológico , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Transtornos Mieloproliferativos/tratamento farmacológico , Receptores de Trombopoetina/genética , Transdução de Sinais
2.
Nucleic Acids Res ; 45(21): 12509-12528, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069457

RESUMO

To counteract the breakdown of genome integrity, eukaryotic cells have developed a network of surveillance pathways to prevent and resolve DNA damage. Recent data has recognized the importance of RNA binding proteins (RBPs) in DNA damage repair (DDR) pathways. Here, we describe Nol12 as a multifunctional RBP with roles in RNA metabolism and genome maintenance. Nol12 is found in different subcellular compartments-nucleoli, where it associates with ribosomal RNA and is required for efficient separation of large and small subunit precursors at site 2; the nucleoplasm, where it co-localizes with the RNA/DNA helicase Dhx9 and paraspeckles; as well as GW/P-bodies in the cytoplasm. Loss of Nol12 results in the inability of cells to recover from DNA stress and a rapid p53-independent ATR-Chk1-mediated apoptotic response. Nol12 co-localizes with DNA repair proteins in vivo including Dhx9, as well as with TOPBP1 at sites of replication stalls, suggesting a role for Nol12 in the resolution of DNA stress and maintenance of genome integrity. Identification of a complex Nol12 interactome, which includes NONO, Dhx9, DNA-PK and Stau1, further supports the protein's diverse functions in RNA metabolism and DNA maintenance, establishing Nol12 as a multifunctional RBP essential for genome integrity.


Assuntos
DNA/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Reparo do DNA , Humanos , Proteínas Nucleares/química , Domínios Proteicos , Proteínas de Ligação a RNA/química
3.
Mol Cell ; 36(5): 768-81, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005841

RESUMO

Ribosomal processing requires a series of endo- and exonucleolytic steps for the production of mature ribosomes, of which most have been described. To ensure ribosome synthesis, 3' end formation of rRNA uses multiple nucleases acting in parallel; however, a similar parallel mechanism had not been described for 5' end maturation. Here, we identify Rrp17p as a previously unidentified 5'-3' exonuclease essential for ribosome biogenesis, functioning with Rat1p in a parallel processing pathway analogous to that of 3' end formation. Rrp17p is required for efficient exonuclease digestion of the mature 5' ends of 5.8S(S) and 25S rRNAs, contains a catalytic domain close to its N terminus, and is highly conserved among higher eukaryotes, being a member of a family of exonucleases. We show that Rrp17p binds late pre-60S ribosomes, accompanying them from the nucleolus to the nuclear periphery, and provide evidence for physical and functional links between late 60S subunit processing and export.


Assuntos
Exonucleases/fisiologia , Proteínas de Membrana/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Exonucleases/genética , Exonucleases/metabolismo , Exorribonucleases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
4.
Nat Methods ; 4(11): 951-6, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17922018

RESUMO

The study of the dynamic interactome of cellular ribonucleoprotein (RNP) particles has been hampered by severe methodological limitations. In particular, the affinity purification of intact RNP complexes from cell lysates suffers from RNA degradation, loss of interacting macromolecules and poor overall yields. Here we describe a rapid affinity-purification method for efficient isolation of the subcomplexes that dynamically organize different RNP biogenesis pathways in Saccharomyces cerevisiae. Our method overcomes many of the previous limitations to produce large RNP interactomes with almost no contamination.


Assuntos
Ribonucleoproteínas/análise , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Técnicas de Imunoadsorção , Espectrometria de Massas , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/análise , Proteínas de Transporte Nucleocitoplasmático/genética , Análise de Sequência com Séries de Oligonucleotídeos , Porinas , Proteínas de Ligação ao Cap de RNA , RNA Fúngico/análise , RNA Mensageiro/análise , RNA Ribossômico/análise , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Proteínas Ribossômicas/análise , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína Estafilocócica A/análise , Proteína Estafilocócica A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...